XIEv: Dynamic Analysis for Crawling
and Modeling of Web Applications

Manuel Leithner
SBA Research
Wien, Austria
mleithner@sba-research.org

ABSTRACT

Researchers and practitioners in the fields of testing, security as-
sessment and web development seeking to evaluate a given web
application often have to rely on the existence of a model of the
respective system, which is then used as input to task-specific tools.
Such models may include information on HT TP endpoints and their
parameters, available user actions/event listeners and required as-
sets. Unfortunately, this data is often unavailable in practice, as only
rigorous development practices or manual analysis guarantee their
existence and correctness. Crawlers based on static analysis have
traditionally been used to extract required information from exist-
ing sites. Regrettably, these tools can not accurately account for the
dynamic behavior introduced by JavaScript and other technologies
that are prevalent on modern sites. While methods based on dy-
namic analysis exist, they are not fully capable of identifying event
listeners and their effects. This work presents XIEv, an approach for
dynamic analysis of web applications that produces an execution
trace usable for the extraction of navigation graphs, identification
of bugs at runtime and enumeration of resources requested by each
page. It offers improved recognition and selection of event listeners
as well as a greater range of observed effects compared to existing
approaches.

CCS CONCEPTS

« Software and its engineering — Software verification and
validation; « Security and privacy — Web application secu-
rity; « Information systems — Data extraction and integration;
Service discovery and interfaces.

KEYWORDS

web crawling, dynamic analysis, modeling, web applications

ACM Reference Format:

Manuel Leithner and Dimitris E. Simos. 2020. XIEv: Dynamic Analysis for
Crawling and Modeling of Web Applications. In The 35th ACM/SIGAPP
Symposium on Applied Computing (SAC "20), March 30-April 3, 2020, Brno,
Czech Republic. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3341105.3373885

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC °20, March 30-April 3, 2020, Brno, Czech Republic

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6866-7/20/03...$15.00

https://doi.org/10.1145/3341105.3373885

2201

Dimitris E. Simos
SBA Research
Wien, Austria

dsimos@sba-research.org

1 INTRODUCTION

In the decades since its inception, the internet has rapidly developed
to be the most prevalent communication medium for businesses and
individuals alike. Web services nowadays are seen as basic building
blocks for both commercial and government services. Ensuring the
correctness and availability of these platforms is thus a necessity
for anyone offering services over the web. A plethora of tools used
to assist practitioners in the evaluation of websites exist. These
utilities commonly require a comprehensive list of individual pages
that make up the target site. Unfortunately, such a list is often
not available for a multitude of reasons: Penetration testers try
to simulate the experience of an outside attacker and thus view
the site as a black box on purpose. Developers seeking to assess
the correctness or security posture of their own product generally
do have access to the source code, but rising complexity due to
increased reliance on external codebases and limitations arising
from commercial pressure often lead to a situation where it is
infeasible to produce comprehensive and correct documentation
on all available pages, REST endpoints, dead functions etc. for all
but the most trivial sites.

The traditional (and most commonly used) approach employed
by search engines, security assessment and testing tools is to utilize
a crawler based on static analysis. Fundamentally, these tools follow
a simple process: The HTML source code of a page is parsed, static
elements such as images, JavaScript source files and stylesheets
are downloaded and all links and form targets are enqueued as
additional targets. The procedure terminates when no further tar-
gets exist that have not been retrieved and analyzed. Common
tools based on this approach include wget [18], Skipfish [17] and
w3af [16]. These implementations tend to be very mature and sta-
ble; in many cases, they include methods for dealing with issues
such as the explosive growth of the number of individual pages
due to server-side scripts and localized content. However, most
modern sites can not be fully explored purely by analyzing the
HTML source. Even disregarding the discrepancies introduced by
the choice of parser, dynamic content facilitated by JavaScript, CSS
and other technologies modify the behavior of a page in ways that
can not feasibly be identified by static analysis. In the most extreme
cases (often coined single-page apps), the HTML source of a page
consists purely of some static metadata and instructions to load
stylesheets and JavaScript code, the latter of which is responsible
for fetching and displaying the actual content (which is thus not
detected by static analysis). A small number of approaches using
dynamic analysis against websites exist in the literature, but they
tend to be limited to a small subset of actionable elements on a
page, only observe a fraction of possible effects and do not fully
take into account the complexity of modern sites.

